Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Parkinsonism mutations in DNAJC6 cause lipid defects and neurodegeneration that are rescued by Synj1
oleh: Julie Jacquemyn, Sabine Kuenen, Jef Swerts, Benjamin Pavie, Vinoy Vijayan, Ayse Kilic, Dries Chabot, Yu-Chun Wang, Nils Schoovaerts, Nikky Corthout, Patrik Verstreken
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2023-02-01 |
Deskripsi
Abstract Recent evidence links dysfunctional lipid metabolism to the pathogenesis of Parkinson’s disease, but the mechanisms are not resolved. Here, we generated a new Drosophila knock-in model of DNAJC6/Auxilin and find that the pathogenic mutation causes synaptic dysfunction, neurological defects and neurodegeneration, as well as specific lipid metabolism alterations. In these mutants, membrane lipids containing long-chain polyunsaturated fatty acids, including phosphatidylinositol lipid species that are key for synaptic vesicle recycling and organelle function, are reduced. Overexpression of another protein mutated in Parkinson’s disease, Synaptojanin-1, known to bind and metabolize specific phosphoinositides, rescues the DNAJC6/Auxilin lipid alterations, the neuronal function defects and neurodegeneration. Our work reveals a functional relation between two proteins mutated in Parkinsonism and implicates deregulated phosphoinositide metabolism in the maintenance of neuronal integrity and neuronal survival.