Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Intelligent Bio-Latticed Cryptography: A Quantum-Proof Efficient Proposal
oleh: Ohood Saud Althobaiti, Toktam Mahmoodi, Mischa Dohler
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-11-01 |
Deskripsi
The emergence of the Internet of Things (IoT) and the tactile internet presents high-quality connectivity strengthened by next-generation networking to cover a vast array of smart systems. Quantum computing is another powerful enabler of the next technological revolution, which will improve the world tremendously, and it will continue to grow to cover an extensive array of important functions, in addition to it receiving recently great interest in the scientific scene. Because quantum computers have the potential to overcome various issues related to traditional computing, major worldwide technical corporations are investing competitively in them. However, along with its novel potential, quantum computing is introducing threats to cybersecurity algorithms, as quantum computers are able to decipher many complex mathematical problems that classical computers cannot. This research paper proposes a robust and performance-effective lattice-driven cryptosystem in the context of face recognition that provides lightweight intelligent bio-latticed cryptography, which will aid in overcoming the cybersecurity challenges of smart world applications in the pre- and post-quantum era and with sixth-generation (6G) networks. Since facial features are symmetrically used to generate encryption keys on the fly without sending or storing private data, our proposal has the valuable attribute of dramatically combining symmetric and asymmetric cryptography operations in the proposed cryptosystem. Implementation-based evaluation results prove that the proposed protocol maintains high-performance in the context of delay, energy consumption, throughput and stability on cellular network topology in classical Narrowband-Internet of Things (NB-IoT) mode.