Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Short-term wind speed prediction using Extended Kalman filter and machine learning
oleh: Sung-ho Hur
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2021-11-01 |
Deskripsi
Wind speed prediction could play an important role in improving the performance of wind turbine control and condition monitoring. For example, by predicting or forecasting the upcoming wind in advance, fluctuations in wind power output in above rated wind speed could be reduced without causing an increase in pitch activity, and anomalies such as an extreme gust could be detected before it reaches the wind turbine, allowing appropriate control actions to take place to minimise any potential damage that could be incurred by the anomalies. A novel wind speed prediction scheme is presented in this paper that comprises mainly two stages, estimation and prediction. Estimation is first carried out using an Extended Kalman filter, which is designed based on a 3 dimensional wind field model and a nonlinear rotor model. Prediction is subsequently performed in two steps, extrapolation and machine learning. The wind speed prediction scheme is tested using data obtained from a high-fidelity aeroelastic model.