Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On 2-Rainbow Domination Number of Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
oleh: Rija Erveš, Janez Žerovnik
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2021-05-01 |
Deskripsi
We obtain new results on 2-rainbow domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In some cases (for some infinite families), exact values are established, and in all other cases lower and upper bounds are given. In particular, it is shown that, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>></mo><mn>3</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>8</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>10</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>5</mn><mo>,</mo><mn>9</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>10</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>≤</mo><msub><mi>γ</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>1</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>10</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mi>k</mi><mo>+</mo><mn>1</mn><mo>≤</mo><msub><mi>γ</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>10</mn></mrow></semantics></math></inline-formula>.