Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Effects of Low Voltage Electrostatic Field Combined with Low Temperature and High Humidity Thawing on Beef Tenderness and Water Retention
oleh: Qingqing LI, Xiaojia BAI, Hengxun LIN, Chunhui ZHANG, Shuangmei XIA, Xia LI
Format: | Article |
---|---|
Diterbitkan: | The editorial department of Science and Technology of Food Industry 2024-10-01 |
Deskripsi
To investigate the effects of a low-pressure electrostatic field combined with low temperature and high humidity on beef tenderness, this study utilized bovine longissimus dorsi muscle as the experimental material. The analysis included low-pressure electrostatic field thawing (at a temperature of 4 ℃ and relative humidity of 50%), low temperature and high humidity thawing (at a temperature of 4 ℃ and relative humidity of 98%), low-pressure electrostatic field combined with low temperature and high humidity thawing (temperature 4 ℃ and relative humidity 98%), and low temperature thawing (temperature 4 ℃ and relative humidity 50%). The parameters examined encompassed shear force, texture, water distribution, water content, water holding capacity, and sensory evaluation of frozen beef. The findings revealed that low-voltage electrostatic field combined with low-temperature and high-humidity thawing exhibited the shortest thawing time (804 min) compared to the other three thawing methods. The thawing loss (2.06%), cooking loss (26.09%), and centrifugation loss (15.00%) were significantly lower than the other three thawing methods (P<0.05). The shear force values for vertical muscle fibers (95.46 N) and parallel muscle fibers (41.69 N) were the lowest, while water content (68.31%) was the highest, indicating superior tenderness quality. Sensory evaluation results indicated that the tissue state, odor, elasticity, and color of meat samples thawed by low-voltage electrostatic field combined with low temperature and high humidity were superior to those of other thawing methods, with the overall acceptability being the highest.