Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The structural basis of the activation and inhibition of DSR2 NADase by phage proteins
oleh: Ruiwen Wang, Qi Xu, Zhuoxi Wu, Jialu Li, Hao Guo, Tianzhui Liao, Yuan Shi, Ling Yuan, Haishan Gao, Rong Yang, Zhubing Shi, Faxiang Li
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2024-07-01 |
Deskripsi
Abstract DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.