Spatial damage sensing ability of metallic particulate-reinforced cementitious composites: Insights from electrical resistance tomography

oleh: Sumeru Nayak, Sumanta Das

Format: Article
Diterbitkan: Elsevier 2019-08-01

Deskripsi

The paper evaluates the spatial damage sensing ability of self-sensing mortars containing up to 40% waste metallic iron powder by volume as cement-replacement. The spatial damage-sensing ability is evaluated using a framework that integrates the electrical resistance tomography (ERT)-based conductivity reconstruction algorithm with multiscale numerical homogenization with a view to enable microstructure-guided design of such self-sensing composites. The ERT-based framework uses experimentally measured boundary electrode voltages as input; assigns the effective conductivity of the composite (obtained from numerical homogenization) as initial estimate of the conductivity distribution and initiates the iterative process involving the well-posed forward model and the ill-posed inverse problem to obtain the conductivity map in the damaged configuration. The reconstructed damage maps, thus obtained, confirm sufficient spatial damage-sensing ability of mortars containing 30% or greater amount of iron powder validating the applicability of such self-sensing composites towards spatial damage sensing for health monitoring of structures. Keywords: Electrical resistance tomography (ERT), Numerical homogenization, Iron powder, Electrical conductivity, Spatial damage sensing