Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Local Dosimetry at Cellular and Subcellular Level in HF and Millimeter-Wave Bands
oleh: ZAIN HAIDER, DENYS NIKOLAYEV, YVES LE DREAN, ANNALISA DE ANGELIS, MICAELA LIBERTI, RONAN SAULEAU, MAXIM ZHADOBOV
Format: | Article |
---|---|
Diterbitkan: | IEEE 2021-01-01 |
Deskripsi
The aim of this study was to investigate quantitatively local sub-cellular power deposition at frequencies upcoming for wireless power transfer (WPT) and millimeter-wave (mmWave) technologies. The study was performed on a realistic two-dimensional keratinocyte cell model, designed based on electron microscopy images and experimental data on surface area fraction of keratinocyte to explicitly represent nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus and vesicles. The average power loss density (<inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula>) and electric field (<inline-formula><tex-math notation="LaTeX">${\boldsymbol{E_{\text{avg}}}}$</tex-math></inline-formula>) were computed by solving Laplace's equation under quasi-static approximation using the finite element method. The numerical results for the spherical cell model were validated with corresponding analytical solutions. The results showed that <inline-formula><tex-math notation="LaTeX">${\boldsymbol{E_{\text{avg}}}}$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula> inside the organelles increased with frequency. Nearly, 51.8% and 98.9% of the incident field on the cell penetrated inside the organelles at 6.78 MHz and 60 GHz, respectively. The <inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula> within the organelles in average was 35.7% (6.78 MHz) and 1.95% (60 GHz) lower than in the cytoplasm. The <inline-formula><tex-math notation="LaTeX">${\boldsymbol{E_{\text{avg}}}}$</tex-math></inline-formula> induced inside nuclear pores (N<inline-formula><tex-math notation="LaTeX">$_\text{p}$</tex-math></inline-formula>) exceeded the incident field by 5 times and 1.1 times at 6.78 MHz and 60 GHz, respectively. The corresponding <inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula> within N<inline-formula><tex-math notation="LaTeX">$_\text{p}$</tex-math></inline-formula> was 32.7 times (6.78 MHz) and 1.2 times (60 GHz) higher than that of the cytoplasm. The enhancement of <inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula> in N<inline-formula><tex-math notation="LaTeX">$_\text{p}$</tex-math></inline-formula> suggests that the intracellular traffic is locally exposed to higher exposure levels compared to the background <inline-formula><tex-math notation="LaTeX">${\boldsymbol{PLD_{\text{avg}}}}$</tex-math></inline-formula> in cytosol.