Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Comparative Study of Crossover Mathematical Model of Breast Cancer Based on Ψ-Caputo Derivative and Mittag-Leffler Laws: Numerical Treatments
oleh: Nasser H. Sweilam, Seham M. Al-Mekhlafi, Waleed S. Abdel Kareem, Ghader Alqurishi
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-09-01 |
Deskripsi
Two novel crossover models for breast cancer that incorporate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula>-Caputo fractal variable-order fractional derivatives, fractal fractional-order derivatives, and variable-order fractional stochastic derivatives driven by variable-order fractional Brownian motion and the crossover model for breast cancer that incorporates Atangana–Baleanu Caputo fractal variable-order fractional derivatives, fractal fractional-order derivatives, and variable-order fractional stochastic derivatives driven by variable-order fractional Brownian motion are presented here, where we used a simple nonstandard kernel function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Ψ</mo><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> in the first model and a non-singular kernel in the second model. Moreover, we evaluated our models using actual statistics from Saudi Arabia. To ensure consistency with the physical model problem, the symmetry parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> is introduced. We can obtain the fractal variable-order fractional Caputo and Caputo–Katugampola derivatives as special cases from the proposed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula>-Caputo derivative. The crossover dynamics models define three alternative models: fractal variable-order fractional model, fractal fractional-order model, and variable-order fractional stochastic model over three-time intervals. The stability of the proposed model is analyzed. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ψ</mo></semantics></math></inline-formula>-nonstandard finite-difference method is designed to solve fractal variable-order fractional and fractal fractional models, and the Toufik–Atangana method is used to solve the second crossover model with the non-singular kernel. Also, the nonstandard modified Euler–Maruyama method is used to study the variable-order fractional stochastic model. Numerous numerical tests and comparisons with real data were conducted to validate the methods’ efficacy and support the theoretical conclusions.