Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Leveraging Deep Neural Networks to Map Caribou Lichen in High-Resolution Satellite Images Based on a Small-Scale, Noisy UAV-Derived Map
oleh: Shahab Jozdani, Dongmei Chen, Wenjun Chen, Sylvain G. Leblanc, Christian Prévost, Julie Lovitt, Liming He, Brian A. Johnson
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-07-01 |
Deskripsi
Lichen is an important food source for caribou in Canada. Lichen mapping using remote sensing (RS) images could be a challenging task, however, as lichens generally appear in unevenly distributed, small patches, and could resemble surficial features. Moreover, collecting lichen labeled data (reference data) is expensive, which restricts the application of many robust supervised classification models that generally demand a large quantity of labeled data. The goal of this study was to investigate the potential of using a very-high-spatial resolution (1-cm) lichen map of a small sample site (e.g., generated based on a single UAV scene and using field data) to train a subsequent classifier to map caribou lichen over a much larger area (~0.04 km<sup>2</sup> vs. ~195 km<sup>2</sup>) and a lower spatial resolution image (in this case, a 50-cm WorldView-2 image). The limited labeled data from the sample site were also partially noisy due to spatial and temporal mismatching issues. For this, we deployed a recently proposed <i>Teacher-Student</i> semi-supervised learning (SSL) approach (based on U-Net and U-Net++ networks) involving unlabeled data to assist with improving the model performance. Our experiments showed that it was possible to scale-up the UAV-derived lichen map to the WorldView-2 scale with reasonable accuracy (overall accuracy of 85.28% and F1-socre of 84.38%) without collecting any samples directly in the WorldView-2 scene. We also found that our noisy labels were partially beneficial to the SSL robustness because they improved the false positive rate compared to the use of a cleaner training set directly collected within the same area in the WorldView-2 image. As a result, this research opens new insights into how current very high-resolution, small-scale caribou lichen maps can be used for generating more accurate large-scale caribou lichen maps from high-resolution satellite imagery.