Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Transcriptome Analysis Unravels Metabolic and Molecular Pathways Related to Fruit Sac Granulation in a Late-Ripening Navel Orange (<i>Citrus sinensis</i> Osbeck)
oleh: Li-Ming Wu, Ce Wang, Li-Gang He, Zhi-Jing Wang, Zhu Tong, Fang Song, Jun-Fan Tu, Wen-Ming Qiu, Ji-Hong Liu, Ying-Chun Jiang, Shu-Ang Peng
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2020-01-01 |
Deskripsi
Lanelate navel orange (<i>Citrus sinensis</i> Osbeck) is a late-ripening citrus cultivar increasingly planted in China. The physiological disorder juice sac granulation often occurs in the fruit before harvest, but the physiological and molecular mechanisms underlying this disorder remain elusive. In this study, we found that fruit granulation of the late-ripening navel orange in the Three Gorges area is mainly caused by the low winter temperature in high altitude areas. Besides, dynamic changes of water content in the fruit after freezing were clarified. The granulation of fruit juice sacs resulted in increases in cell wall cellulose and decreases in soluble solid content, and the cells gradually became shrivelled and hollow. Meanwhile, the contents of pectin, cellulose, and lignin in juice sac increased with increasing degrees of fruit granulation. The activities of pectin methylesterase (PME) and the antioxidant enzymes peroxidase (POD), superoxide dismutase, and catalase increased, while those of polygalacturonase (PG) and cellulose (CL) decreased. Furthermore, a total of 903 differentially expressed genes were identified in the granulated fruit as compared with non-disordered fruit using RNA-sequencing, most of which were enriched in nine metabolic pathways, and qRT-PCR results suggested that the juice sac granulation is closely related to cell wall metabolism. In addition, the expression of <i>PME</i> involved in pectin decomposition was up-regulated, while that of <i>PG</i> was down-regulated. Phenylalanine ammonia lyase (<i>PAL</i>), cinnamol dehydrogenase (<i>CAD</i>), and <i>POD</i> related to lignin synthesis were up-regulated, while <i>CL</i> involved in cellulose decomposition was down-regulated. The expression patterns of these genes were in line with those observed in low-temperature treatment as revealed by qRT-PCR, further confirming that low winter temperature is associated with the fruit granulation of late-ripening citrus. Accordingly, low temperature would aggravate the granulation by affecting cell wall metabolism of late-ripening citrus fruit.