Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Quantum range-migration-algorithm for synthetic aperture radar applications
oleh: Erik H. Waller, Andreas Keil, Fabian Friederich
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2023-07-01 |
Deskripsi
Abstract The 3D range-migration algorithm (RMA) and its 2D equivalent, the omega-k algorithm, are employed in a wide range of applications where reconstruction of synthetic aperture data is required, from satellite radar imaging of planets over seismic imaging of the earth crust, down to phased-array ultrasound and ultrasonic application, and recently in-line synthetic aperture radar for non-destructive testing. These algorithms are based on Fourier transforms and share their time-complexity. This limits highly-resolved measurement data to be processed at high speeds which would be advantageous for modern production feed lines. In this publication, we present the development and implementation of the RMA on a quantum computer that scales favourably compared to the time complexity of the classical RMA. We compare reconstruction results of simulated and measured data of the classical and quantum RMA. Hereby, the quantum RMA is run on a quantum simulator backend as well as on IBM’s Q System One quantum computer. The results show that real world applications and testing tasks may benefit from future quantum computers.