Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Asymptotic Properties of Quasi-Maximum Likelihood Estimators for Heterogeneous Spatial Autoregressive Models
oleh: Feng Qiu, Hao Ding, Jianhua Hu
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-09-01 |
Deskripsi
In this paper, we address a class of heterogeneous spatial autoregressive models with all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> spatial coefficients taking <i>m</i> distinct true values, where <i>m</i> is independent of the sample size <i>n</i>, and we establish asymptotic properties of the maximum likelihood estimator and the quasi-maximum likelihood estimator for all parameters in the class of models, extending Lee’s work (2004). The rates of convergence of those estimators depend on the features of values taken by elements of the spatial weights matrix in this model. Under the situations where, based on the values of the weights, each individual will not only influence a few neighbors but also be influenced by only a few neighbors, the estimator can enjoy an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>n</mi></msqrt></semantics></math></inline-formula>-rate of convergence and be asymptotically normal. However, when each individual can influence many neighbors or can be influenced by many neighbors and their number does not exceed <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow></semantics></math></inline-formula>, singularity of the information matrix may occur, and various components of the estimators may have different (usually lower than <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msqrt><mi>n</mi></msqrt></semantics></math></inline-formula>) rates of convergence. An inconsistent estimator is provided if some important assumptions are violated. Finally, simulation studies demonstrate that the finite sample performances of maximum likelihood estimators are good.