Radiation Interception, Conversion and Partitioning Efficiency in Potato Landraces: How Far Are We from the Optimum?

oleh: Cecilia Silva-Díaz, David A. Ramírez, Javier Rinza, Johan Ninanya, Hildo Loayza, René Gómez, Noelle L. Anglin, Raúl Eyzaguirre, Roberto Quiroz

Format: Article
Diterbitkan: MDPI AG 2020-06-01

Deskripsi

Crop efficiencies associated with intercepted radiation, conversion into biomass and allocation to edible organs are essential for yield improvement strategies that would enhance genetic properties to maximize carbon gain without increasing crop inputs. The production of 20 potato landraces—never studied before—was analyzed for radiation interception (<inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula>), conversion (<inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>) and partitioning (<inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>) efficiencies. Additionally, other physiological traits related to senescence delay (normalized difference vegetation index (NDVI)<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mi>s</mi> <mi>l</mi> <mi>p</mi> </mrow> </msub> </semantics> </math> </inline-formula>), tuberization precocity (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mi>u</mi> </mrow> </semantics> </math> </inline-formula>), photosynthetic performance and dry tuber yield per plant (TY) were also assessed. Vegetation reflectance was remotely acquired and the efficiencies estimated through a process-based model parameterized by a time-series of airborne imageries. The combination of <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula>, closely associated with an early tuber maturity and a NDVI<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mi>s</mi> <mi>l</mi> <mi>p</mi> </mrow> </msub> </semantics> </math> </inline-formula> explained 39% of the variability grouping the most productive genotypes. TY was closely correlated to senescence delay (r<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mi>P</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>s</mi> <mi>o</mi> <mi>n</mi> </mrow> </msub> </semantics> </math> </inline-formula> = 0.74), indicating the usefulness of remote sensing methods for potato yield diversity characterization. About 89% of TY was explained by the first three principal components, associated mainly to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>t</mi> <mi>u</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula>, respectively. When comparing potato with other major crops, its <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula> is very close to the theoretical maximum. These findings suggest that there is room for improving <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>ε</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> to enhance potato production.