Zero-Crossing Point Detection of Sinusoidal Signal in Presence of Noise and Harmonics Using Deep Neural Networks

oleh: Venkataramana Veeramsetty, Bhavana Reddy Edudodla, Surender Reddy Salkuti

Format: Article
Diterbitkan: MDPI AG 2021-11-01

Deskripsi

Zero-crossing point detection is necessary to establish a consistent performance in various power system applications, such as grid synchronization, power conversion and switch-gear protection. In this paper, zero-crossing points of a sinusoidal signal are detected using deep neural networks. In order to train and evaluate the deep neural network model, new datasets for sinusoidal signals having noise levels from 5% to 50% and harmonic distortion from 10% to 50% are developed. This complete study is implemented in Google Colab using deep learning framework Keras. Results shows that the proposed deep learning model is able to detect zero-crossing points in a distorted sinusoidal signal with good accuracy.