Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On (<i>p</i>, <i>q</i>)-Sine and (<i>p</i>, <i>q</i>)-Cosine Fubini Polynomials
oleh: Waseem Ahmad Khan, Ghulam Muhiuddin, Ugur Duran, Deena Al-Kadi
| Format: | Article |
|---|---|
| Diterbitkan: | MDPI AG 2022-03-01 |
Deskripsi
In recent years, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-special polynomials, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-Euler, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-Genocchi, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-Bernoulli, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-Frobenius-Euler, have been studied and investigated by many mathematicians, as well physicists. It is important that any polynomial have explicit formulas, symmetric identities, summation formulas, and relations with other polynomials. In this work, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-sine and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-cosine Fubini polynomials are introduced and multifarious abovementioned properties for these polynomials are derived by utilizing some series manipulation methods. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-derivative operator rules and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mi>p</mi><mo>,</mo><mi>q</mi></mfenced></semantics></math></inline-formula>-integral representations for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-sine and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-cosine Fubini polynomials are also given. Moreover, several correlations related to both the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Bernoulli, Euler, and Genocchi polynomials and the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Stirling numbers of the second kind are developed.