The minimizing problem involving $p$-Laplacian and Hardy–Littlewood–Sobolev upper critical exponent

oleh: Yu Su, Haibo Chen

Format: Article
Diterbitkan: University of Szeged 2018-08-01

Deskripsi

In this paper, we study the minimizing problem $$ S_{p,1,\alpha,\mu}:= \inf_{u\in W^{1,p}(\mathbb{R}^{N})\setminus\{0\}} \frac{ \int_{\mathbb{R}^{N}}|\nabla u|^{p}\mathrm{d}x - \mu \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} \mathrm{d}x} {\left( \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)|^{p^{*}_{\alpha}}|u(y)|^{p^{*}_{\alpha}}}{|x-y|^{\alpha}} \mathrm{d}x \mathrm{d}y \right)^{\frac{p}{2\cdot p^{*}_{\alpha}}}}, $$ where $N\geqslant3$, $p\in(1,N)$, $\mu\in\big[0,\big(\frac{N-p}{p}\big)^{p} \big)$, $\alpha\in(0,N)$ and $p^{*}_{\alpha}=\frac{p}{2}\big(\frac{2N-\alpha}{N-p}\big)$ is the Hardy–Littlewood–Sobolev upper critical exponent. Firstly, by using refinement of Hardy–Littlewood–Sobolev inequality, we prove that $S_{p,1,\alpha,\mu}$ is achieved in $\mathbb{R}^{N}$ by a radially symmetric, nonincreasing and nonnegative function. Secondly, we give a estimation of extremal function.