Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
A Resilient Large-Scale Trajectory Index for Cloud-Based Moving Object Applications
oleh: Omar Alqahtani, Tom Altman
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2020-10-01 |
Deskripsi
The availability of location-aware devices generates tremendous volumes of moving object trajectories. The processing of these large-scale trajectories requires innovative techniques that are capable of adapting to changes in cloud systems to satisfy a wide range of applications and non-programmer end users. We introduce a Resilient Moving Object Index that is capable of balancing both spatial and object localities to maximize the overall performance in numerous environments. It is equipped with compulsory, discrete, and impact factor prediction models. The compulsory and discrete models are used to predict a locality pivot based on three fundamental aspects: computation resources, nature of the trajectories, and query types. The impact factor model is used to predict the influence of contrasting queries. Moreover, we provide a framework to extract efficient training sets and features without adding overhead to the index construction. We conduct an extensive experimental study to evaluate our approach. The evaluation includes two testbeds and covers spatial, temporal, spatio-temporal, continuous, aggregation, and retrieval queries. In most cases, the experiments show a significant performance improvement compared to various indexing schemes on a compact trajectory dataset as well as a sparse dataset. Most important, they demonstrate how our proposed index adapts to change in various environments.