Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Nonlinear Radiative Nanofluidic Hydrothermal Unsteady Bidirectional Transport with Thermal/Mass Convection Aspects
oleh: Muhammad Faisal, Kanayo Kenneth Asogwa, Nazek Alessa, Karuppusamy Loganathan
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-12-01 |
Deskripsi
The collective effect of thermal and mass convection along with the significance of thermal radiation, heat source/sink, and magneto-nanofluid are considered. A bi-directional stretching device is used to generate the symmetry of the flowing structure. Nonlinear behavior of thermal radiation is considered here. The magnetic field is considered non-uniform and vertically upward. Significances of pedesis motion and Ludwig–Soret are also revealed in an innovative way with heat source/sink effects. The concept of symmetry is used to transmute the transport equations from PDE type to nonlinear ODE type. We solved the transformed setup numerically by adopting Keller-box method criteria with the targeted accuracy rate. Graphical interpretations are explored with code verification. It is important to conclude that friction coefficients decline for incremental values of stretching parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.1</mn><mo>≤</mo><mi mathvariant="sans-serif">α</mi><mo>≤</mo><mn>0.9</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, magnetic field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.3</mn><mo>≤</mo><mi>M</mi><mo>≤</mo><mn>0.9</mn></mrow><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> and unsteady parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.2</mn><mo>≤</mo><mi mathvariant="sans-serif">Λ</mi><mo>≤</mo><mn>0.9</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> along with the bidirectional velocity components, and the rate of heat transmission rises with temperature ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1.3</mn><mo>≤</mo><mi mathvariant="sans-serif">Γ</mi><mo>≤</mo><mn>1.7</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and temperature Biot number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.3</mn><mo>≤</mo><mi>B</mi><msub><mi>i</mi><mi>T</mi></msub><mo>≤</mo><mn>0.9</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> amplification. Moreso, the rate of mass transfer is enhanced with growing values of pedesis motion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.2</mn><mo>≤</mo><msub><mi>N</mi><mi>b</mi></msub><mo>≤</mo><mn>0.6</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, unsteady parameter and concentration Biot number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.3</mn><mo>≤</mo><mi>B</mi><msub><mi>i</mi><mi>C</mi></msub><mo>≤</mo><mn>0.9</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with opposite effect when the Ludwig–Soret parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>0.3</mn><mo>≤</mo><msub><mi>N</mi><mi>t</mi></msub><mo>≤</mo><mn>0.6</mn></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is boosted.