Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Integrating Machine Learning Algorithms for Predicting Solar Power Generation
oleh: Sangeetha K., Liz Anitha Sofia, P. Suganthi, Femilinjana D. Little
| Format: | Article |
|---|---|
| Diterbitkan: | EDP Sciences 2023-01-01 |
Deskripsi
In recent years, there has been a growing interest in using artificial intelligence (AI) techniques to predict solar power generation. One such technique is the use of an artificial neural network (ANN) with a genetic algorithm (GA) to optimize its parameters. This approach involves training an ANN to predict solar power generation based on historical data and using a GA to optimize the ANN’s architecture and activation function. The GA searches for the best combination of hidden layers and activation functions to minimize the error between the predicted and actual solar power generation. This paper presents an algorithm for implementing an ANN-GA for predicting solar power generation. The algorithm involves preprocessing the data, defining the ANN architecture, defining the fitness function, and implementing the GA to optimize the ANN’s parameters. The results of this approach can be useful for predicting future solar power generation and optimizing the performance of solar power systems.