Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Surface Passivation by Quantum Exclusion: On the Quantum Efficiency and Stability of Delta-Doped CCDs and CMOS Image Sensors in Space
oleh: Michael E. Hoenk, April D. Jewell, Gillian Kyne, John Hennessy, Todd Jones, Charles Shapiro, Nathan Bush, Shouleh Nikzad, David Morris, Katherine Lawrie, Jesper Skottfelt
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-12-01 |
Deskripsi
Radiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si–SiO<sub>2</sub> interface and oxide trap densities to analyze the performance of silicon detectors and explore the requirements for stable, radiation-hardened surface passivation. By analyzing QE data acquired before, during, and after, exposure to damaging UV radiation, we explore the physical and chemical mechanisms underlying UV-induced surface damage, variable surface charge, QE, and stability in ion-implanted and delta-doped detectors. Delta-doped CCD and CMOS image sensors are shown to be uniquely hardened against surface damage caused by ionizing radiation, enabling the stability and photometric accuracy required by NASA for exoplanet science and time domain astronomy.