Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores
oleh: Zhuo Li, Zhikai Liang, Zhenxue Jiang, Hailong Yu, Youdong Yang, Lei Xiao
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2019-03-01 |
Deskripsi
Pore connectivity of lacustrine shales was inadequately documented in previous papers. In this work, lacustrine shales from the lower Cretaceous Shahezi Formation in the Changling Fault Depression (CFD) were investigated using field emission scanning electron microscopy (FE-SEM), mercury intrusion capillary pressure (MICP), low pressure gas (CO<sub>2</sub> and N<sub>2</sub>) sorption (LPGA) and spontaneous fluid imbibition (SFI) experiments. The results show that pores observed from FE-SEM images are primarily interparticle (interP) pores in clay minerals and organic matter (OM) pores. The dominant pore width obtained from LPGA and MICP data is in the range of 0.3–0.7 nm and 3–20 nm. The slopes of n-decane and deionized (DI) water SFI are in the range of 0.34–0.55 and 0.22–0.38, respectively, suggesting a mixed wetting nature and better-connected hydrophobic pores than hydrophilic pores in the Shahezi shales. Low pore connectivity is identified by the dominant nano-size pore widths (0.3–20 nm), low DI water SFI slopes (around 0.25), high geometric tortuosity (4.75–8.89) and effective tortuosity (1212–6122). Pore connectivity follows the order of calcareous shale > argillaceous shale > siliceous shale. The connected pores of Shahezi shales is mainly affected by the high abundance and coexistence of OM pores and clay, carbonate minerals host pores.