Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in <i>Corynebacterium glutamicum</i>
oleh: Ning Liu, Ting-Ting Zhang, Zhi-Ming Rao, Wei-Guo Zhang, Jian-Zhong Xu
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2021-08-01 |
Deskripsi
The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in <i>Corynebacterium glutamicum</i>. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH<sub>4</sub><sup>+</sup>) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH<sub>4</sub><sup>+</sup> environment. In order to reduce the requirement of NH<sub>4</sub><sup>+</sup>, the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene <i>dapD</i> and overexpressing the <i>ddh</i> gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (<i>q</i><sub>Lys,max.</sub>) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and <i>q</i><sub>Lys,max</sub> achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.