Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The potential of ethanolic extract of Moringa oleifera leaves on HSF1 expression in oral cancer induced by benzo[a]pyrene
oleh: Vania Syahputri, Theresia Indah Budhy, Bambang Sumaryono
| Format: | Article | 
|---|---|
| Diterbitkan: | Universitas Airlangga 2020-06-01 | 
Deskripsi
Background: Oral cancer is the sixth most common malignancy that occurs in the world, with more than 330,000 deaths a year. In cancer, mutations occur in proteins, accompanied by unfolding proteins, caused by the unstable micro-environment in cells. To stabilise this condition, protein protectors called heat shock proteins (HSPs) are needed. HSPs are activated by a group of transcription factors known as heat shock factor 1 (HSF1). HSF1 is a considered target in cancer therapy. Moringa oleifera leaves are known to have anti-cancer properties because of bioactive compounds called flavonoid and isothiocyanate and are used as herbal therapy for cancer. Purpose: To investigate the potential effect of ethanolic extract of Moringa oleifera on HSF1 expression in oral cancer induced by benzo[a]pyrene. Methods: This study used 25 male Wistar rats divided into five groups consisting of the negative control group (K-), which was only given aquadest; the positive control group (K+), which was induced with benzo[a]pyrene and given aquadest; and treatment groups that were induced with benzo[a]pyrene and given Moringa oleifera leaf extract at concentrations of 3.125% (P1), 6.25% (P2), and 9.375% (P3). Examination of HSF1 expression was carried out by immunohistochemistry staining. Data were analysed using the Kruskal–Wallis test and post-hoc Tukey HSD. Results: HSF1 expression in the P1, P2, and P3 groups decreased significantly compared to the K+ group. There were no significant differences between the P1, P2, and P3 groups (p > 0.005). Conclusion: Ethanolic extract of Moringa oleifera leaves in three concentrations can decrease expression of HSF1 in oral cancer induced by benzo[a]pyrene.