Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Measurements of branching fractions and asymmetry parameters of Ξ c 0 → Λ K ¯ ∗ 0 $$ {\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0} $$ , Ξ c 0 → Σ 0 K ¯ ∗ 0 $$ {\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0} $$ , and Ξ c 0 → Σ + K ∗ − $$ {\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -} $$ decays at Belle
oleh: The Belle collaboration, S. Jia, S. S. Tang, C. P. Shen, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, V. Aulchenko, T. Aushev, R. Ayad, V. Babu, S. Bahinipati, P. Behera, J. Bennett, M. Bessner, T. Bilka, J. Biswal, A. Bobrov, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, M. Campajola, D. Červenkov, M.-C. Chang, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, H. E. Cho, K. Cho, S.-J. Cho, S.-K. Choi, Y. Choi, S. Choudhury, D. Cinabro, S. Cunliffe, S. Das, G. De Nardo, R. Dhamija, F. Di Capua, Z. Doležal, T. V. Dong, S. Eidelman, D. Epifanov, T. Ferber, K. Flood, B. G. Fulsom, R. Garg, V. Gaur, N. Gabyshev, A. Garmash, A. Giri, P. Goldenzweig, O. Hartbrich, K. Hayasaka, H. Hayashii, W.-S. Hou, C.-L. Hsu, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, M. Iwasaki, Y. Iwasaki, W. W. Jacobs, Y. Jin, K. K. Joo, G. Karyan, Y. Kato, H. Kichimi, C. H. Kim, D. Y. Kim, K.-H. Kim, S. H. Kim, Y.-K. Kim, K. Kinoshita, P. Kodyš, T. Konno, A. Korobov, S. Korpar, E. Kovalenko, P. Križan, R. Kroeger, P. Krokovny, T. Kuhr, K. Kumara, A. Kuzmin, Y.-J. Kwon, K. Lalwani, J. S. Lange, S. C. Lee, J. Li, L. K. Li, Y. B. Li, L. Li Gioi, J. Libby, K. Lieret, D. Liventsev, C. MacQueen, M. Masuda, T. Matsuda, D. Matvienko, J. T. McNeil, M. Merola, F. Metzner, K. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, R. Mussa, M. Nakao, A. Natochii, L. Nayak, M. Nayak, M. Niiyama, N. K. Nisar, S. Nishida, K. Nishimura, K. Ogawa, S. Ogawa, H. Ono, Y. Onuki, P. Oskin, P. Pakhlov, G. Pakhlova, S. Pardi, H. Park, S.-H. Park, S. Patra, S. Paul, R. Pestotnik, L. E. Piilonen, T. Podobnik, V. Popov, E. Prencipe, M. T. Prim, A. Rostomyan, N. Rout, G. Russo, D. Sahoo, S. Sandilya, A. Sangal, V. Savinov, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, M. E. Sevior, C. Sharma, J.-G. Shiu, A. Sokolov, E. Solovieva, M. Starič, Z. S. Stottler, M. Sumihama, T. Sumiyoshi, M. Takizawa, K. Tanida, F. Tenchini, K. Trabelsi, S. Uehara, T. Uglov, Y. Unno, K. Uno, S. Uno, P. Urquijo, Y. Usov, R. Van Tonder, G. Varner, E. Waheed, C. H. Wang, M.-Z. Wang, P. Wang, M. Watanabe, O. Werbycka, E. Won, B. D. Yabsley, W. Yan, S. B. Yang, H. Ye, J. Yelton, J. H. Yin, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhukova
Format: | Article |
---|---|
Diterbitkan: | SpringerOpen 2021-06-01 |
Deskripsi
Abstract Using a data sample of 980 fb −1 collected with the Belle detector at the KEKB asymmetric-energy e + e − collider, we study the processes of Ξ c 0 → Λ K ¯ ∗ 0 $$ {\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0} $$ , Ξ c 0 → Σ 0 K ¯ ∗ 0 $$ {\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0} $$ , and Ξ c 0 → Σ + K ∗ − $$ {\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -} $$ for the first time. The relative branching ratios to the normalization mode of Ξ c 0 → Ξ − π + $$ {\Xi}_c^0\to {\Xi}^{-}{\pi}^{+} $$ are measured to be B Ξ c 0 → Λ K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.18 ± 0.02 stat . ± 0.01 syst . , B Ξ c 0 → Σ 0 K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.69 ± 0.03 stat . ± 0.03 syst . , B Ξ c 0 → Σ + K ∗ − / B Ξ c 0 → Ξ − π + = 0.34 ± 0.06 stat . ± 0.02 syst . , $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.18\pm 0.02\left(\mathrm{stat}.\right)\pm 0.01\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.69\pm 0.03\left(\mathrm{stat}.\right)\pm 0.03\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.34\pm 0.06\left(\mathrm{stat}.\right)\pm 0.02\left(\mathrm{syst}.\right),\end{array}} $$ where the uncertainties are statistical and systematic, respectively. We obtain B Ξ c 0 → Λ K ¯ ∗ 0 = 3.3 ± 0.3 stat . ± 0.2 syst . ± 1.0 ref . × 10 − 3 , B Ξ c 0 → Σ 0 K ¯ ∗ 0 = 12.4 ± 0.5 stat . ± 0.5 syst . ± 3.6 ref . × 10 − 3 , B Ξ c 0 → Σ + K ∗ 0 = 6.1 ± 1.0 stat . ± 0.4 syst . ± 1.8 ref . × 10 − 3 , $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)=\left(3.3\pm 0.3\left(\mathrm{stat}.\right)\pm 0.2\left(\mathrm{syst}.\right)\pm 1.0\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)=\left(12.4\pm 0.5\left(\mathrm{stat}.\right)\pm 0.5\left(\mathrm{syst}.\right)\pm 3.6\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast 0}\right)=\left(6.1\pm 1.0\left(\mathrm{stat}.\right)\pm 0.4\left(\mathrm{syst}.\right)\pm 1.8\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\end{array}} $$ where the uncertainties are statistical, systematic, and from B Ξ c 0 → Ξ − π + $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ , respectively. The asymmetry parameters α Ξ c 0 → Λ K ¯ ∗ 0 $$ \alpha \left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right) $$ and α Ξ c 0 → Σ + K ∗ − $$ \alpha \left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right) $$ are 0.15 ± 0.22(stat.) ± 0.04(syst.) and −0.52 ± 0.30(stat.) ± 0.02(syst.), respectively, where the uncertainties are statistical followed by systematic.