Color Enhancement Strategies for 3D Printing of X-ray Computed Tomography Bone Data for Advanced Anatomy Teaching Models

oleh: Megumi Inoue, Tristan Freel, Anthony Van Avermaete, W. Matthew Leevy

Format: Article
Diterbitkan: MDPI AG 2020-02-01

Deskripsi

Three-dimensional (3D) printed anatomical models are valuable visual aids that are widely used in clinical and academic settings to teach complex anatomy. Procedures for converting human biomedical image datasets, like X-ray computed tomography (CT), to prinTable 3D files were explored, allowing easy reproduction of highly accurate models; however, these largely remain monochrome. While multi-color 3D printing is available in two accessible modalities (binder-jetting and poly-jet/multi-jet systems), studies embracing the viability of these technologies in the production of anatomical teaching models are relatively sparse, especially for sub-structures within a segmentation of homogeneous tissue density. Here, we outline a strategy to manually highlight anatomical subregions of a given structure and multi-color 3D print the resultant models in a cost-effective manner. Readily available high-resolution 3D reconstructed models are accessible to the public in online libraries. From these databases, four representative files (of a femur, lumbar vertebra, scapula, and innominate bone) were selected and digitally color enhanced with one of two strategies (painting or splitting) guided by Feneis and Dauber&#8217;s <i>Pocket Atlas of Human Anatomy</i>. Resulting models were created via 3D printing with binder-jet and/or poly-jet machines with important features, such as muscle origin and insertion points, highlighted using multiple colors. The resulting multi-color, physical models are promising teaching tools that will enhance the anatomical learning experience.