Electronic Structure-, Phonon Spectrum-, and Effective Mass- Related Thermoelectric Properties of PdXSn (X = Zr, Hf) Half Heuslers

oleh: Bindu Rani, Aadil Fayaz Wani, Utkir Bahodirovich Sharopov, Lokanath Patra, Jaspal Singh, Atif Mossad Ali, A. F. Abd El-Rehim, Shakeel Ahmad Khandy, Shobhna Dhiman, Kulwinder Kaur

Format: Article
Diterbitkan: MDPI AG 2022-10-01

Deskripsi

We hereby discuss the thermoelectric properties of PdXSn(X = Zr, Hf) half Heuslers in relation to lattice thermal conductivity probed under effective mass (hole/electrons) calculations and deformation potential theory. In addition, we report the structural, electronic, mechanical, and lattice dynamics of these materials as well. Both alloys are indirect band gap semiconductors with a gap of 0.91 eV and 0.82 eV for PdZrSn and PdHfSn, respectively. Both half Heusler materials are mechanically and dynamically stable. The effective mass of electrons/holes is (0.13/1.23) for Zr-type and (0.12/1.12) for Hf-kind alloys, which is inversely proportional to the relaxation time and directly decides the electrical/thermal conductivity of these materials. At 300K, the magnitude of lattice thermal conductivity observed for PdZrSn is 15.16 W/mK and 9.53 W/mK for PdHfSn. The highest observed ZT value for PdZrSn and PdHfSn is 0.32 and 0.4, respectively.