Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
An Aminobutyric Acid Transaminase in Zea mays Interacts With Rhizoctonia solani Cellulase to Participate in Disease Resistance
oleh: Xiuna Guo, Jinyin Chen, Mengyi Gao, Duochuan Li
Format: | Article |
---|---|
Diterbitkan: | Frontiers Media S.A. 2022-04-01 |
Deskripsi
Corn sheath blight, caused by AG1-IA, a fusion group of Rhizoctonia solani, which acts as a kind of necrotrophic fungal pathogen, poses a global threat to the production of Zea mays. Although cellulase plays a crucial role in R. solani infections, how plants respond to it is still poorly understood. In this study, we identified a gamma-aminobutyric acid transaminase (GABA-T), ZmGABA-T, in Z. mays that interacts with a cell wall–degrading enzyme (CWDE), EG1, in the cell membrane, using yeast two-hybrid assay, co-immunoprecipitation (Co-IP), and bimolecular fluorescence complementation assays. We found that the combination of EG1 and ZmGABA-T suppressed the allergic necrosis induced by EG1. We also found that the substrate of GABA-T–GABA, can inhibit the transcription of EG1. Transient expression of ZmGABA-T inhibited R. solani infection in Nicotiana benthamiana. The homolog in Oryza sativa, OsGABA-T, could also interact with EG1 to suppress the allergic necrosis induced by EG1. The OsGABA-T knocked out plants displayed enhanced susceptibility to R. solani and showed larger lesions. In conclusion, our results suggest that ZmGABA-T inhibits allergic necrosis induced by EG1 based on the combination with EG1, producing resistance to R. solani infection.