Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Computing the 2-Adic Complexity of Two Classes Generalized Cyclotomic Sequences
oleh: Shiwen Sun, Tongjiang Yan, Yuhua Sun, Ming Yan
Format: | Article |
---|---|
Diterbitkan: | IEEE 2020-01-01 |
Deskripsi
This paper contributes to analyze the 2-adic complexity of a class of Ding-Helleseth generalized cyclotomic sequences and a class of Whiteman generalized cyclotomic sequences of periods of <inline-formula> <tex-math notation="LaTeX">$N=pq$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> are two odd distinct primes with <inline-formula> <tex-math notation="LaTeX">$\mathrm {gcd}(p-1,q-1)=2$ </tex-math></inline-formula> satisfying <inline-formula> <tex-math notation="LaTeX">$p\equiv q\equiv 3\pmod 4$ </tex-math></inline-formula>. The results show that the 2-adic complexity of these sequences is at least <inline-formula> <tex-math notation="LaTeX">$pq-p-q-1$ </tex-math></inline-formula>. Then it is large enough to resist the attacks of rational approximation algorithm.