Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted Kaniadakis Entropy
oleh: Iulia-Elena Hirica, Cristina-Liliana Pripoae, Gabriel-Teodor Pripoae, Vasile Preda
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-08-01 |
Deskripsi
The paper studies the Lie symmetries of the nonlinear Fokker-Planck equation in one dimension, which are associated to the weighted Kaniadakis entropy. In particular, the Lie symmetries of the nonlinear diffusive equation, associated to the weighted Kaniadakis entropy, are found. The MaxEnt problem associated to the weighted Kaniadakis entropy is given a complete solution, together with the thermodynamic relations which extend the known ones from the non-weighted case. Several different, but related, arguments point out a subtle dichotomous behavior of the Kaniadakis constant <i>k</i>, distinguishing between the cases <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>∈</mo><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></semantics></math></inline-formula>. By comparison, the Lie symmetries of the NFPEs based on Tsallis <i>q</i>-entropies point out six “exceptional” cases, for: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mfrac><mn>7</mn><mn>3</mn></mfrac></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula>.