Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Genome-Wide Identification and Expression Analyses of the bZIP Transcription Factor Genes in moso bamboo (<i>Phyllostachys edulis</i>)
oleh: Feng Pan, Min Wu, Wenfang Hu, Rui Liu, Hanwei Yan, Yan Xiang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2019-05-01 |
Deskripsi
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene families, and play crucial roles in many processes, including stress responses, hormone effects. The TF family also participates in plant growth and development. However, limited information is available for these genes in moso bamboo (<i>Phyllostachys edulis</i>), one of the most important non-timber forest products in the world. In the present study, 154 putative <i>PhebZIP</i> genes were identified in the moso bamboo genome. The phylogenetic analyses indicate that the <i>PhebZIP</i> gene proteins classify into 9 subfamilies and the gene structures and conserved motifs that analyses identified among all <i>PhebZIP</i> proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that paralogous pairs of <i>PhebZIP</i> genes in moso bamboo underwent a large-scale genome duplication event that occurred 7−15 million years ago (MYA). According to promoter sequence analysis, we further selected 18 genes which contain the higher number of <i>cis</i>-regulatory elements for expression analysis. The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with possibly different mechanisms. The tissue-specific expression profiles of <i>PhebZIP</i> genes in five plant tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ development, especially seed development. Subcellular localization and transactivation activity analysis showed that <i>PhebZIP47</i> and <i>PhebZIP126</i> were localized in the nucleus and <i>PhebZIP47</i> with no transcriptional activation in yeast. Our research provides a comprehensive understanding of <i>PhebZIP</i> genes and may aid in the selection of appropriate candidate genes for further cloning and functional analysis in moso bamboo growth and development, and improve their resistance to stress during their life.