Structure-Based Drug Design Studies Toward the Discovery of Novel Chalcone Derivatives as Potential Epidermal Growth Factor Receptor (EGFR) Inhibitors

oleh: Menier Al-Anazi, Belal O. Al-Najjar, Melati Khairuddean

Format: Article
Diterbitkan: MDPI AG 2018-12-01

Deskripsi

Human Epidermal Growth Factor Receptor-1 (EGFR), a transmembrane tyrosine kinase receptor (RTK), has been associated with several types of cancer, including breast, lung, ovarian, and anal cancers. Thus, the receptor was targeted by a variety of therapeutic approaches for cancer treatments. A series of chalcone derivatives are among the most highly potent and selective inhibitors of EGFR described to date. A series of chalcone derivatives were proposed in this study to investigate the intermolecular interactions in the active site utilizing molecular docking and molecular dynamics simulations. After a careful analysis of docking results, compounds <b>1a</b> and <b>1d</b> were chosen for molecular dynamics simulation study. Extensive hydrogen bond analysis throughout 7 ns molecular dynamics simulation revealed the ability of compounds <b>1a</b> and <b>1d</b> to retain the essential interactions needed for the inhibition, especially MET 93. Finally, MM-GBSA calculations highlight on the capability of the ligands to bind strongly within the active site with binding energies of &#8722;44.04 and &#8722;56.6 kcal/mol for compounds <b>1a</b> and <b>1d</b>, respectively. Compound <b>1d</b> showed to have a close binding energy with TAK-285 (&#8722;66.17 kcal/mol), which indicates a high chance for compound <b>1d</b> to exhibit inhibitory activity, thus recommending to synthesis it to test its biological activity. It is anticipated that the findings reported here may provide very useful information for designing effective drugs for the treatment of EGFR-related cancer disease.