Moduli space of rank one logarithmic connections over a compact Riemann surface

oleh: Singh, Anoop

Format: Article
Diterbitkan: Académie des sciences 2020-07-01

Deskripsi

Let $\mathcal{M}_X$ denote the moduli space of rank one logarithmic connections singular over a finite subset $S$ of a compact Riemann surface $X$ with fixed residues. We study the rational functions into $\mathcal{M}_X$. We prove that there is a natural compactification of $\mathcal{M}_X$ and the Picard group of $\mathcal{M}_X$ is isomorphic to the Picard group of $\mathrm{Pic}^d(X)$.