Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
The Machine Learning landscape of top taggers
oleh: Gregor Kasieczka, Tilman Plehn, Anja Butter, Kyle Cranmer, Dipsikha Debnath, Barry M. Dillon, Malcolm Fairbairn, Darius A. Faroughy, Wojtek Fedorko, Christophe Gay, Loukas Gouskos, Jernej F. Kamenik, Patrick T. Komiske, Simon Leiss, Alison Lister, Sebastian Macaluso, Eric M. Metodiev, Liam Moore, Ben Nachman, Karl Nordström, Jannicke Pearkes, Huilin Qu, Yannik Rath, Marcel Rieger, David Shih, Jennifer M. Thompson, Sreedevi Varma
Format: | Article |
---|---|
Diterbitkan: | SciPost 2019-07-01 |
Deskripsi
Based on the established task of identifying boosted, hadronically decaying top quarks, we compare a wide range of modern machine learning approaches. Unlike most established methods they rely on low-level input, for instance calorimeter output. While their network architectures are vastly different, their performance is comparatively similar. In general, we find that these new approaches are extremely powerful and great fun.