Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres
oleh: Wenkui Dong, Wengui Li, Luming Shen, Daichao Sheng
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2019-11-01 |
Deskripsi
Conductive rubber fibres filled carbon black (CB)/cementitious composites were developed to achieve the cement-based sensors with excellent piezoresistivity in this study. Ameliorations on the conductivity and piezoresistive sensitivity of CB filled composites were mainly explored with conductive rubber fibres embedded. Their compressive strengths were investigated to evaluate the practical application possibility. The results indicated that the composites with CB content <4.0 wt% possessed acceptable compressive strengths. In terms of conductivity and piezoresistivity, both conductivity and piezoresistivity of composites filled with 0.5 wt% CB increased with the rubber content, and their gauge factor raised to 91 when embedded with 80 rubber fibres (1.27 vol%). Moreover, phenomenon of “piezoresistive percolation” was observed by sharp fractional changes of resistivity for the composites filled with 1.0 wt% CB, where existed highest gauge factor reaching 482 when embedded with same rubber fibres. However, because of the excellent conductivity of 2.0 wt% CB filled composites, the gauge factor firstly increased but then slightly decreased around 100 with increase of rubber fibre content. Overall, conductive rubber fibres can significantly improve the piezoresistivity of CB/cementitious composites by the increased gauge factor. Keywords: Carbon black (CB), Conductive rubber fibre, Cement-based sensor, Conductivity, Piezoresistivity, Gauge factor