Analysis of Salinity Tolerance in Tomato Introgression Lines Based on Morpho-Physiological and Molecular Traits

oleh: Ahmed Abdelrahim Mohamed Ali, Walid Ben Romdhane, Mohamed Tarroum, Mohammed Al-Dakhil, Abdullah Al-Doss, Abdullah A. Alsadon, Afif Hassairi

Format: Article
Diterbitkan: MDPI AG 2021-11-01

Deskripsi

The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: <i>Solanum lycopersicum</i> cv-6203 × <i>Solanum habrochaites</i> and <i>Solanum lycopersicum</i> M82 × <i>Solanum pennellii</i>. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, <i>SlSOS1</i>, <i>SlNHX2</i>, <i>SlNHX4</i>, and <i>SlERF4</i> genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While <i>SlHKT1.1</i>, <i>SlNHX2</i>, <i>SlNHX4</i>, and <i>SlERF4</i> genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, <i>SlSOS2</i> and <i>SlSOS3</i> genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, <i>SlSOS1</i> and <i>SlHKT1.2</i> genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from <i>S. habrochaites</i> and <i>S. pennellii</i> genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions.