Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth
oleh: Cheng Ma
Format: | Article |
---|---|
Diterbitkan: | AIMS Press 2023-04-01 |
Deskripsi
<p>This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem</p> <p class="disp_formula"> $ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $ </p> <p>where</p> <p class="disp_formula">$ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $</p> <p>$ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.</p>