Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
On Symmetric Additive Mappings and Their Applications
oleh: Shakir Ali, Turki Alsuraiheed, Vaishali Varshney, Indah Emilia Wijayanti
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-10-01 |
Deskripsi
The key motive of this paper is to study symmetric additive mappings and discuss their applications. The study of these symmetric mappings makes it possible to characterize symmetric <i>n</i>-derivations and describe the structure of the quotient ring <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">S</mi><mo>/</mo><mi mathvariant="fraktur">P</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">S</mi></semantics></math></inline-formula> is any ring and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">P</mi></semantics></math></inline-formula> is a prime ideal of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="fraktur">S</mi></semantics></math></inline-formula>. The symmetricity of additive mappings allows us to transfer ring theory results to functional analyses, particularly to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>∗</mo></msup></semantics></math></inline-formula>-algebras. Precisely, we describe the structures of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>C</mi><mo>∗</mo></msup></semantics></math></inline-formula>-algebras via symmetric additive mappings.