Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Deep learning-enhanced R-loop prediction provides mechanistic implications for repeat expansion diseases
oleh: Jiyun Hu, Zetong Xing, Hongbing Yang, Yongli Zhou, Liufei Guo, Xianhong Zhang, Longsheng Xu, Qiong Liu, Jing Ye, Xiaoming Zhong, Jixin Wang, Ruoyao Lin, Erping Long, Jiewei Jiang, Liang Chen, Yongcheng Pan, Lang He, Jia-Yu Chen
Format: | Article |
---|---|
Diterbitkan: | Elsevier 2024-08-01 |
Deskripsi
Summary: R-loops play diverse functional roles, but controversial genomic localization of R-loops have emerged from experimental approaches, posing significant challenges for R-loop research. The development and application of an accurate computational tool for studying human R-loops remains an unmet need. Here, we introduce DeepER, a deep learning-enhanced R-loop prediction tool. DeepER showcases outstanding performance compared to existing tools, facilitating accurate genome-wide annotation of R-loops and a deeper understanding of the position- and context-dependent effects of nucleotide composition on R-loop formation. DeepER also unveils a strong association between certain tandem repeats and R-loop formation, opening a new avenue for understanding the mechanisms underlying some repeat expansion diseases. To facilitate broader utilization, we have developed a user-friendly web server as an integral component of R-loopBase. We anticipate that DeepER will find extensive applications in the field of R-loop research.