Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Characterization of Lie-Type Higher Derivations of von Neumann Algebras with Local Actions
oleh: Ab Hamid Kawa, Turki Alsuraiheed, S. N. Hasan, Shakir Ali, Bilal Ahmad Wani
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2023-11-01 |
Deskripsi
Let <i>m</i> and <i>n</i> be fixed positive integers. Suppose that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">A</mi></semantics></math></inline-formula> is a von Neumann algebra with no central summands of type <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>I</mi><mn>1</mn></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mi>m</mi></msub><mo>:</mo><mi mathvariant="script">A</mi><mo>→</mo><mi mathvariant="script">A</mi></mrow></semantics></math></inline-formula> is a Lie-type higher derivation. In continuation of the rigorous and versatile framework for investigating the structure and properties of operators on Hilbert spaces, more facts are needed to characterize Lie-type higher derivations of von Neumann algebras with local actions. In the present paper, our main aim is to characterize Lie-type higher derivations on von Neumann algebras and prove that in cases of zero products, there exists an additive higher derivation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ϕ</mi><mi>m</mi></msub><mo>:</mo><mi mathvariant="script">A</mi><mo>→</mo><mi mathvariant="script">A</mi></mrow></semantics></math></inline-formula> and an additive higher map <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mi>m</mi></msub><mo>:</mo><mi mathvariant="script">A</mi><mo>→</mo><mi>Z</mi><mrow><mo stretchy="false">(</mo><mi mathvariant="script">A</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, which annihilates every <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></semantics></math></inline-formula> commutator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>p</mi><mi>n</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi mathvariant="fraktur">S</mi><mn>1</mn></msub><mo>,</mo><msub><mi mathvariant="fraktur">S</mi><mn>2</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi mathvariant="fraktur">S</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="fraktur">S</mi><mn>1</mn></msub><msub><mi mathvariant="fraktur">S</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mi>m</mi></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="fraktur">S</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>ϕ</mi><mi>m</mi></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="fraktur">S</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>ζ</mi><mi>m</mi></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="fraktur">S</mi><mo stretchy="false">)</mo></mrow><mspace width="3.33333pt"></mspace><mi>f</mi><mi>o</mi><mi>r</mi><mspace width="3.33333pt"></mspace><mi>a</mi><mi>l</mi><mi>l</mi><mspace width="3.33333pt"></mspace><mi mathvariant="fraktur">S</mi><mo>∈</mo><mi mathvariant="script">A</mi><mo>.</mo></mrow></semantics></math></inline-formula> We also demonstrate that the result holds true for the case of the projection product. Further, we discuss some more related results.