Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Biomarker of Neuroinflammation in Parkinson’s Disease
oleh: Tsai-Wei Liu, Chiung-Mei Chen, Kuo-Hsuan Chang
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2022-04-01 |
Deskripsi
Parkinson’s disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in <i>SNCA</i>, <i>LRRK2</i>, <i>PRKN</i>, <i>PINK1</i>, and <i>DJ-1</i> are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.