Distinct surface response to black carbon aerosols

oleh: T. Tang, D. Shindell, Y. Zhang, A. Voulgarakis, A. Voulgarakis, J.-F. Lamarque, G. Myhre, G. Faluvegi, G. Faluvegi, B. H. Samset, T. Andrews, D. Olivié, T. Takemura, X. Lee

Format: Article
Diterbitkan: Copernicus Publications 2021-09-01

Deskripsi

<p>For the radiative impact of individual climate forcings, most previous studies focused on the global mean values at the top of the atmosphere (TOA), and less attention has been paid to surface processes, especially for black carbon (BC) aerosols. In this study, the surface radiative responses to five different forcing agents were analyzed by using idealized model simulations. Our analyses reveal that for greenhouse gases, solar irradiance, and scattering aerosols, the surface temperature changes are mainly dictated by the changes of surface radiative heating, but for BC, surface energy redistribution between different components plays a more crucial role. Globally, when a unit BC forcing is imposed at TOA, the net shortwave radiation at the surface decreases by <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">5.87</mn><mo>±</mo><mn mathvariant="normal">0.67</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ceddc505c45ef5b5f6c3122544bef0be"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00001.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00001.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span> (averaged over global land without Antarctica), which is partially offset by increased downward longwave radiation (<span class="inline-formula">2.32±0.38</span> W m<span class="inline-formula"><sup>−2</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span> from the warmer atmosphere, causing a net decrease in the incoming downward surface radiation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">3.56</mn><mo>±</mo><mn mathvariant="normal">0.60</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="bc04927f65185fee6e3bc79d26026e88"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00002.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00002.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>. Despite a reduction in the downward radiation energy, the surface air temperature still increases by <span class="inline-formula">0.25±0.08</span> K because of less efficient energy dissipation, manifested by reduced surface sensible (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">2.88</mn><mo>±</mo><mn mathvariant="normal">0.43</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="17d6b80fda128263ff2096d02e99a496"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00003.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00003.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>) and latent heat flux (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.54</mn><mo>±</mo><mn mathvariant="normal">0.27</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="6b74b260ecb790dac717b7f5288056b6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00004.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00004.png"/></svg:svg></span></span> W m<span class="inline-formula"><sup>−2</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>), as well as a decrease in Bowen ratio (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M22" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.20</mn><mo>±</mo><mn mathvariant="normal">0.07</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b5dff9acfed0d4a91c65237a7a1d1703"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00005.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00005.png"/></svg:svg></span></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>). Such reductions of turbulent fluxes can be largely explained by enhanced air stability (<span class="inline-formula">0.07±0.02</span> K (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>), measured as the difference of the potential temperature between 925 hPa and surface, and reduced surface wind speed (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.05</mn><mo>±</mo><mn mathvariant="normal">0.01</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="dacbece38c26a62ebd66aa672dc3d356"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-13797-2021-ie00006.svg" width="64pt" height="10pt" src="acp-21-13797-2021-ie00006.png"/></svg:svg></span></span> m s<span class="inline-formula"><sup>−1</sup></span> (W m<span class="inline-formula"><sup>−2</sup></span>)<span class="inline-formula"><sup>−1</sup></span>). The enhanced stability is due to the faster atmospheric warming relative to the surface, whereas the reduced wind speed can be partially explained by enhanced stability and reduced Equator-to-pole atmospheric temperature gradient. These rapid adjustments under BC forcing occur in the lower atmosphere and propagate downward to influence the surface energy redistribution and thus surface temperature response, which is not observed under greenhouse gases or scattering aerosols. Our study provides new insights into the impact of absorbing aerosols on surface energy balance and surface temperature response.</p>