Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
SaLT&PepPr is an interface-predicting language model for designing peptide-guided protein degraders
oleh: Garyk Brixi, Tianzheng Ye, Lauren Hong, Tian Wang, Connor Monticello, Natalia Lopez-Barbosa, Sophia Vincoff, Vivian Yudistyra, Lin Zhao, Elena Haarer, Tianlai Chen, Sarah Pertsemlidis, Kalyan Palepu, Suhaas Bhat, Jayani Christopher, Xinning Li, Tong Liu, Sue Zhang, Lillian Petersen, Matthew P. DeLisa, Pranam Chatterjee
Format: | Article |
---|---|
Diterbitkan: | Nature Portfolio 2023-10-01 |
Deskripsi
Abstract Protein-protein interactions (PPIs) are critical for biological processes and predicting the sites of these interactions is useful for both computational and experimental applications. We present a Structure-agnostic Language Transformer and Peptide Prioritization (SaLT&PepPr) pipeline to predict interaction interfaces from a protein sequence alone for the subsequent generation of peptidic binding motifs. Our model fine-tunes the ESM-2 protein language model (pLM) with a per-position prediction task to identify PPI sites using data from the PDB, and prioritizes motifs which are most likely to be involved within inter-chain binding. By only using amino acid sequence as input, our model is competitive with structural homology-based methods, but exhibits reduced performance compared with deep learning models that input both structural and sequence features. Inspired by our previous results using co-crystals to engineer target-binding “guide” peptides, we curate PPI databases to identify partners for subsequent peptide derivation. Fusing guide peptides to an E3 ubiquitin ligase domain, we demonstrate degradation of endogenous β-catenin, 4E-BP2, and TRIM8, and highlight the nanomolar binding affinity, low off-targeting propensity, and function-altering capability of our best-performing degraders in cancer cells. In total, our study suggests that prioritizing binders from natural interactions via pLMs can enable programmable protein targeting and modulation.