Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Ascitic fluid shear stress in concert with hepatocyte growth factor drive stemness and chemoresistance of ovarian cancer cells via the c-Met-PI3K/Akt-miR-199a-3p signaling pathway
oleh: Ayon A. Hassan, Margarita Artemenko, Maggie K. S. Tang, Zeyu Shi, Lin-Yu Chen, Hung-Cheng Lai, Zhenyu Yang, Ho-Cheung Shum, Alice S. T. Wong
Format: | Article |
---|---|
Diterbitkan: | Nature Publishing Group 2022-06-01 |
Deskripsi
Abstract Overcoming drug resistance is an inevitable challenge to the success of cancer treatment. Recently, in ovarian cancer, a highly chemoresistant tumor, we demonstrated an important role of shear stress in stem-like phenotype and chemoresistance using a three-dimensional microfluidic device, which most closely mimics tumor behavior. Here, we examined a new mechanosensitive microRNA—miR-199a-3p. Unlike most key microRNA biogenesis in static conditions, we found that Dicer, Drosha, and Exportin 5 were not involved in regulating miR-199a-3p under ascitic fluid shear stress (0.02 dynes/cm2). We further showed that hepatocyte growth factor (HGF), but not other ascitic cytokines/growth factors such as epidermal growth factor and tumor necrosis factor α or hypoxia, could transcriptionally downregulate miR-199a-3p through its primary transcript miR-199a-1 and not miR-199a-2. Shear stress in the presence of HGF resulted in a concerted effect via a specific c-Met/PI3K/Akt signaling axis through a positive feedback loop, thereby driving cancer stemness and drug resistance. We also showed that miR-199a-3p expression was inversely correlated with enhanced drug resistance properties in chemoresistant ovarian cancer lines. Patients with low miR-199a-3p expression were more resistant to platinum with a significantly poor prognosis. miR-199a-3p mimic significantly suppressed ovarian tumor metastasis and its co-targeting in combination with cisplatin or paclitaxel further decreased the peritoneal dissemination of ovarian cancer in mice. These findings unravel how biophysical and biochemical cues regulate miR-199a-3p and is important in chemoresistance. miR-199a-3p mimics may serve as a novel targeted therapy for effective chemosensitization.