Machine learning of superconducting critical temperature from Eliashberg theory

oleh: S. R. Xie, Y. Quan, A. C. Hire, B. Deng, J. M. DeStefano, I. Salinas, U. S. Shah, L. Fanfarillo, J. Lim, J. Kim, G. R. Stewart, J. J. Hamlin, P. J. Hirschfeld, R. G. Hennig

Format: Article
Diterbitkan: Nature Portfolio 2022-01-01

Deskripsi

Abstract The Eliashberg theory of superconductivity accounts for the fundamental physics of conventional superconductors, including the retardation of the interaction and the Coulomb pseudopotential, to predict the critical temperature T c. McMillan, Allen, and Dynes derived approximate closed-form expressions for the critical temperature within this theory, which depends on the electron–phonon spectral function α 2 F(ω). Here we show that modern machine-learning techniques can substantially improve these formulae, accounting for more general shapes of the α 2 F function. Using symbolic regression and the SISSO framework, together with a database of artificially generated α 2 F functions and numerical solutions of the Eliashberg equations, we derive a formula for T c that performs as well as Allen–Dynes for low-T c superconductors and substantially better for higher-T c ones. This corrects the systematic underestimation of T c while reproducing the physical constraints originally outlined by Allen and Dynes. This equation should replace the Allen–Dynes formula for the prediction of higher-temperature superconductors.