Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
Extended Regression Analysis for Debye–Einstein Models Describing Low Temperature Heat Capacity Data of Solids
oleh: Ernst Gamsjäger, Manfred Wiessner
Format: | Article |
---|---|
Diterbitkan: | MDPI AG 2024-05-01 |
Deskripsi
Heat capacity data of many crystalline solids can be described in a physically sound manner by Debye–Einstein integrals in the temperature range from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mspace width="0.166667em"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>300</mn><mspace width="0.166667em"></mspace><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>. The parameters of the Debye–Einstein approach are either obtained by a Markov chain Monte Carlo (MCMC) global optimization method or by a Levenberg–Marquardt (LM) local optimization routine. In the case of the MCMC approach the model parameters and the coefficients of a function describing the residuals of the measurement points are simultaneously optimized. Thereby, the Bayesian credible interval for the heat capacity function is obtained. Although both regression tools (LM and MCMC) are completely different approaches, not only the values of the Debye–Einstein parameters, but also their standard errors appear to be similar. The calculated model parameters and their associated standard errors are then used to derive the enthalpy, entropy and Gibbs energy as functions of temperature. By direct insertion of the MCMC parameters of all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>·</mo><msup><mn>10</mn><mn>5</mn></msup></mrow></semantics></math></inline-formula> computer runs the distributions of the integral quantities enthalpy, entropy and Gibbs energy are determined.