Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

oleh: Jeerapan Tientong, Casey R. Thurber, Nandika D’Souza, Adel Mohamed, Teresa D. Golden

Format: Article
Diterbitkan: Wiley 2013-01-01

Deskripsi

Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II) ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV) and pH 3.0 (−21.9 mV) were more stable than at pH 1.6 (−10.1 mV) as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111)/(200) ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa) had improved hardness and morphology compared to pH 2.5 (174 GPa) and pH 1.6 (147 GPa).