Find in Library
Search millions of books, articles, and more
Indexed Open Access Databases
DeepCPI: A Deep Learning-based Framework for Large-scale in silico Drug Screening
oleh: Fangping Wan, Yue Zhu, Hailin Hu, Antao Dai, Xiaoqing Cai, Ligong Chen, Haipeng Gong, Tian Xia, Dehua Yang, Ming-Wei Wang, Jianyang Zeng
Format: | Article |
---|---|
Diterbitkan: | Oxford University Press 2019-10-01 |
Deskripsi
Accurate identification of compound–protein interactions (CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development. Conventional similarity- or docking-based computational methods for predicting CPIs rarely exploit latent features from currently available large-scale unlabeled compound and protein data and often limit their usage to relatively small-scale datasets. In the present study, we propose DeepCPI, a novel general and scalable computational framework that combines effective feature embedding (a technique of representation learning) with powerful deep learning methods to accurately predict CPIs at a large scale. DeepCPI automatically learns the implicit yet expressive low-dimensional features of compounds and proteins from a massive amount of unlabeled data. Evaluations of the measured CPIs in large-scale databases, such as ChEMBL and BindingDB, as well as of the known drug–target interactions from DrugBank, demonstrated the superior predictive performance of DeepCPI. Furthermore, several interactions among small-molecule compounds and three G protein-coupled receptor targets (glucagon-like peptide-1 receptor, glucagon receptor, and vasoactive intestinal peptide receptor) predicted using DeepCPI were experimentally validated. The present study suggests that DeepCPI is a useful and powerful tool for drug discovery and repositioning. The source code of DeepCPI can be downloaded from https://github.com/FangpingWan/DeepCPI. Keywords: Deep learning, Machine learning, Drug discovery, In silico drug screening, Compound–protein interaction prediction