Climate change impact on energy demand in building-urban-atmosphere simulations through the 21st century

oleh: Mathew J Lipson, Marcus Thatcher, Melissa A Hart, Andrew Pitman

Format: Article
Diterbitkan: IOP Publishing 2019-01-01

Deskripsi

Social, technological and climatic changes will transform the way energy is consumed over the 21st century, with important implications for energy networks and greenhouse gas emissions. Here, we develop a method to efficiently explore climate-energy interactions under various scenarios of climate, urban infrastructure and technological change. We couple the Urban Climate and Energy Model with the Conformal Cubic Atmospheric Model as a full-height single column driven with a series of global climate model simulations in an ensemble approach. The framework is evaluated against observations, then a series of century-scale simulations are undertaken to examine projected climate change impacts on electricity and gas demand in the temperate/ oceanic climate of Melbourne, Australia. With air-conditioning ownership remaining at early 21st century levels, and in the absence of other changes, climate change under radiative forcing RCP 8.5 increases peak electricity demand by 10%, and decreases peak gas demand by 22% between 2000 and 2100. However, if projected increases in air-conditioning ownership are considered, peak electricity demand increases by 84%, surpassing peak gas demand in the second half of the century. These findings highlight the complex nature of changes facing energy networks. Changes will be location and scenario dependent.