Molecular Alterations in Sporadic and <i>SOD1</i>-ALS Immortalized Lymphocytes: Towards a Personalized Therapy

oleh: Isabel Lastres-Becker, Gracia Porras, Marina Arribas-Blázquez, Inés Maestro, Daniel Borrego-Hernández, Patricia Boya, Sebastián Cerdán, Alberto García-Redondo, Ana Martínez, Ángeles Martin-Requero

Format: Article
Diterbitkan: MDPI AG 2021-03-01

Deskripsi

Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition where motor neurons (MNs) degenerate. Most of the ALS cases are sporadic (sALS), whereas 10% are hereditarily transmitted (fALS), among which mutations are found in the gene that codes for the enzyme superoxide dismutase 1 (SOD1). A central question in ALS field is whether causative mutations display selective alterations not found in sALS patients, or they converge on shared molecular pathways. To identify specific and common mechanisms for designing appropriate therapeutic interventions, we focused on the <i>SOD1</i>-mutated (<i>SOD1</i>-ALS) versus sALS patients. Since ALS pathology involves different cell types other than MNs, we generated lymphoblastoid cell lines (LCLs) from sALS and <i>SOD1</i>-ALS patients and healthy donors and investigated whether they show changes in oxidative stress, mitochondrial dysfunction, metabolic disturbances, the antioxidant NRF2 pathway, inflammatory profile, and autophagic flux. Both oxidative phosphorylation and glycolysis appear to be upregulated in lymphoblasts from sALS and <i>SOD1</i>-ALS. Our results indicate significant differences in NRF2/ARE pathway between sALS and <i>SOD1</i>-ALS lymphoblasts. Furthermore, levels of inflammatory cytokines and autophagic flux discriminate between sALS and <i>SOD1</i>-ALS lymphoblasts. Overall, different molecular mechanisms are involved in sALS and <i>SOD1</i>-ALS patients and thus, personalized medicine should be developed for each case.